10楼一叶轻舟
(点击左侧我的网站,光临我的博客......)
发表于 2008-6-24 14:07
只看此人
突然之间, 七弄八弄弄出来了,其实勿是老难
设11111=a , 则 11112=a+1, 22223=2a+1
原式 = 1+ [(a+1)^3 - a^3] / [(2a+1)^3 + a^3]
= 1+ (3a^2+3a+1) / (9a^3+12a^2+6a+1)
= 1+ (3a^2+3a+1) / (9a^3+12a^2+6a+1)
= 1+ (3a^2+3a+1) / (9a^3+9a^2+3a+3a^2+3a+1)
= 1+ (3a^2+3a+1) / (3a^2+3a+1)(3a+1)
= 1+ 1 / (3a+1)
= 1+ 1/33334
= 33335/33334
[ 本帖最后由 一叶轻舟 于 2008-6-24 14:13 编辑 ].